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1 - Introduction 

The purpose of this note is to demonstrate how the Jordan’s Lemma can be applied in order to find 
analytical solutions to integrals for which only numerical solutions are usually considered.   

The Jordan’s lemma can be applied in evaluating  integrals along the real axis from − to + . In 
order to do this, it is necessary to modify the integration path by including integrations along an imaginary 
axis. In physics often we meet integrals of the type  
 

                         퐼(푡, 푡 ,푚) = exp (푖휔 푡 )∫ 푔 (휔)휌(휔)exp [−푖휔 (푡 + 푡 )]푑휔                 (1) 
 
 
where 푔(휔) and 휌(휔) are complex functions of the type 
 

푔(휔) =
푖

휔 − 휔  

                                                                                                                                                  (2) 

휌(휔) = 푖
퐴

푒 − 푒  . 
                     

where A, a, and β are parameters which do not depend on . Let us see how the Jordan’s lemma can be 
utilized in order to solve the integral (1). 

The Jorsan’s lemma can be written as [1]: 
 

- if 푓(푧) → 0 uniformly with regard to arg 푧 as 푧 → ∞ when 0 ≤ arg푧 ≤ 휋, and if f (z) is analytic 
when both |푧| > 푐 (constant) and 0 ≤ arg푧 ≤ 휋, then 
 

lim
→

exp(푖 푚푧)푓(푧)푑푧 = 0 

              
             where  is a semicircle of radius  above the real axis with center at the origin. If the     
             function  f (z)  has poles within the closed contour, the values of the integral is           
             different from zero and is equal to the sum of the residues. 
In Eq. (1) we have to distinguish two cases:  
         1 - the case in which t + t0 < 0  
 and  
         2 - the case in which t + t0 > 0.  

First case. For t + t0 < 0, the integration path −, + may be closed with a line at infinity in the 
Imω > 0 half-plane. Hence, I (t, t0,m) may be expressed with the sum of residues R of the integrand function 
at the poles in the upper half-plane, plus (one half of) a possible residue due to the function g(ω − ω0) on 
the real axis at ω = ω0.  

Second case. For t + t0 > 0, I (t, t0,m) may be expressed with the sum of residues (with the sign 
changed) of the integrand function at the poles in the lower half-plane, minus one half of a possible residue 
of g(ω) on the real axis at ω = ω0.  

The value of the parameter m determines the existence of a residue at ω = ω0. For m = 0, there is 
no pole and no residue at ω = ω0; therefore,   
 

                                                                   R(ω0, 0) = 0 .                                                         (3) 
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For m = 1, there is a first-order pole and the corresponding residue R(ω0, 1) is given by  
 

                                                 푅(휔 , 1) = −2휋휌(휔 ) exp(−푖휔 푡).                                      (4) 
 

For m > 1, I (t, t0, m) diverges too rapidly at ω = ω0. However, the difference between two such integrals, 
corresponding to different values of the parameter t0, may compensate for the m-th order divergence and 
present a first order pole. 

The poles in the complex -plane are located at  
 

                                                       휔 = 푖Ω                                                                  (5) 
 
where 

                                                           Ω =  (푗휋 − 2휙)                                                         (6) 
 
hence, they are in the upper half-plane for j  0 and  in the lower half-plane for  j  0. 

The values of the residues, at these poles, are given by 
 

                           푅 Ω = 퐹(푚, 푗, 푡 )(−1) exp Ω (푡 + 푡 ) ,           푚 = 0, 1            (7) 
 
where 

퐹(푚, 푗, 푡 ) = 퐴′푀 exp [푖(푚휓 + 휔 푡 )] 
 

                                                            퐴 = −
휋퐴
푎  ,    푀 =

1

Ω + 휔
                                               (8) 

 
                   cos휓 =

Ω
 ,     sin휓 = −  . 

                    
We conclude that for m = 0, 1 and  푡 + 푡 < 0 
 

  퐼(푡, 푡 ,푚) = 퐼 (푡, 푡 ,푚) = 푅(휔 ,푚) + ∑ 퐹(푚, 푗, 푡 )(−1) exp [Ω (푡 + 푡 )] ,             (9) 
 
whereas, for  푡 + 푡   0 , 
 

 퐼(푡, 푡 ,푚) = 퐼 (푡, 푡 ,푚) = − 푅(휔 ,푚)−∑ 퐹(푚, 푗, 푡 )(−1) exp [Ω (푡 + 푡 )] .      (10) 
 
2 - Applications 
 

Equations (9) and (10) are the exact solutions of the integral (1). 
Let us now apply the technique explained above to two particular cases in the framework of the 

electromagnetic propagation.  
Let us consider, for example, the electric field Et  transmitted through an air slab in the case of 

frustrated total reflection, that is for an incidence angle larger than the limit angle. If the impinging wave is 
represented by a temporal pulse, rather than by a monochromatic wave, it is possible to demonstrate that Et 
is given by [2] (apart from some unessential constants)  
 

                            퐸 ∝ ∫ 푔(휔)휌(휔) exp 푖휔 [훼푥 + 훾(푧 − 푑)] exp(푖휔푡)푑휔 ,                      (11) 
 
where parameters A, a and β depends on the slab width d and on the refractive index n of the medium 
surrounding the slab; the function g(ω) is the incident spectrum, and ρ(ω) represents the transmission 
coefficient, which can be written in the form as in Eq. (2). 

Equation (11) refers to a two-dimensional Cartesian system i, k (coordinates x, z) where α and γ are 
the components of the incident vector of propagation. Thus by putting 푡 = 푛[훼푥 + 훾(푧 − 푑)]/푐, it is easy 
to verify that the transmitted field is given by an integral like the one in Eq. (1).  

Let us see how to evaluate analytically the integral of Eq. (11) by using Jordan’s Lemma.  
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2.1 - Examples 
 
2.1.1 -  First example 
 

Let us consider an incident pulse like a step function, the spectrum of which is 
                             

                                                   푔(휔) = 푔 휋훿(휔 −휔 ) +  ,                                      (12)                                 
 
where g0 is the amplitude of the pulse (located at t = 0) and 0 is the carrier frequency. By putting Eq. (12) 
into Eq. (11), the field Et transmitted after the slab can be written as  
 

          퐸 =  
1
2 푔 휌(휔 ) exp(−푖휔 푡) +

1
2휋 푔

푖
휔 −휔 휌(휔) exp(−푖휔푡)푑휔 .              (13) 

 
The integral 

퐽 =
푖

휔 − 휔 휌(휔) exp(−푖휔푡)푑휔 

is of the same type as in Eq. (1), with t0 = 0 and m = 1. Therefore, by taking into account Eqs. (4), (6), (9) 
and (10), we can write 
 

                        퐽 = 푅(휔 , 1) +∑ 퐹(1, 푗, 0)(−1) exp Ω 푡 ,      for  푡 < 0                  (14)      
             

                        퐽 = − 푅(휔 , 1)− ∑ 퐹(1, 푗, 0)(−1) exp Ω 푡 ,      for  푡   0                   (15) 

By introducing Eqs. (14) and (15) into Eq. (13), and considering that 푭(ퟏ, 풋,ퟎ) = 푨′푴ퟎ퐞퐱퐩 (풊흍),  we can 
conclude that 
 

퐸 =
푔
2휋퐴′

(−1) 푀 exp(푖휓)exp Ω 푡 ,         for  푡 < 0 

                                                                                                                                                (16) 

          퐸 = 푔 휌(휔 ) exp(−푖휔 푡)−
퐴′
2휋

(−1) 푀 exp(푖휓)exp Ω 푡 ,       for  푡 > 0. 

 
This technique can be applied also to more complicated problems. 
 
 
2.1.2  - Second example 

As another example, let us consider a rectangular pulse carried by a frequency 0. 
For a rectangular pulse of height g0 and duration from –T to T, the spectrum g() may be written as 
                

                          푔(휔) = −푖  
푔

휔 −휔
[exp[푖(휔 −휔 )푇] − exp[−푖(휔 − 휔 )푇] ].                   (17) 

                        
By putting Eq. (17) into Eq. (11), the transmitted field is  
 

                                                                     퐸 = −
1

2휋  푔 (퐽 − 퐽 ) ,                                                 (18) 
 
where J1 and  J2 are of the same type as Eq. (1), that is,  
 

퐽 = 퐼(푡,−푇, 1),        퐽 = 퐼(푡,푇, 1). 
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Therefore, by applying Eqs. (9) and (10) we can write 
 

퐽 =  퐼 (푡,−푇, 1),      for 푡 − 푇 < 0,   푡 < 푇 
퐽 =  퐼 (푡,−푇, 1),      for 푡 − 푇 > 0,   푡 > 푇 

  퐽 =  퐼 (푡,푇, 1),          for 푡 + 푇 < 0,   푡 < −푇 
                                             퐽 =  퐼 (푡,푇, 1),          for 푡 + 푇 > 0,   푡 > −푇 .                                (19)     

 
By substituting into Eq. (18), we obtain 
 

   퐸 = −
푔
2휋

[퐼 (푡,−푇, 1)− 퐼 (푡,푇, 1)],       for  푡 < −푇 

                                     퐸 = −
푔
2휋

[퐼 (푡,−푇, 1) − 퐼 (푡,푇, 1)],       for − 푇 < 푡 < 푇             (20) 

퐸 = −
푔
2휋

[퐼 (푡,−푇, 1)− 퐼 (푡,푇, 1)],       for  푡 > 푇 
 
 
It is interesting to note that the two terms 푅(휔 ,푚) in the I-integral cancel each another for  
t  T and t  T, whereas they sum in the interval  –T  t  T. 
 
3 - Conclusions 
 

The two examples considered in the previous Section demonstrate how the Jordan’s lemma can be 
a useful instrument in evaluating analytical solution of complex integrals. 

The procedure can also applied to more complicated integrals, provided that they are of the type in 
Eq. (1): the total solution can always be expressed as the sum of function like Eqs. (14) and (15), each of 
them working in a different temporal range. 
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