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1 Introduction
1.1 THz frequency range

This report presents an analysis of the atmospheric characteristics in the terahertz spectral region
(frequencies from 300 GHz to 10 THz, wavelengths from 30 pm to 1 mm, see Fig. 1.1), with particular attention in
the range 1 to 5 THz. This interval is the spectral range of interest in the framework of DIAST project.
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Fig. 1.1: Different scales and units.
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Fig. 1.2: Absorption spectral windows.

Historically the THz spectral interval has been characterized by a relative lack of convenient radiation
sources, detectors and transmission technology (Fig. 1.2).

The simulated atmospheres presented in this document will be considered during the designs of
different spectroradiometers and for the simulation of their instrumental responses.

The atmospheres have been chosen to be representative of a realistic working scenario in different
acquisition geometries, taking into account the typical gaseous components and pollutants of terrestrial
atmosphere.

2 Atmospheric scenario in the range 600 GHz - 5 THz
2.1 Mathematical background

In a homogeneous medium (i.e. a layer in a constant, stratified atmosphere), the monochromatic
radiance I (i.e. power for normal area, solid angle units) extincted in an infinitesimal layer ds is:
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dl =1(s +ds) —I(s) = —B.(s)I(s)ds
being f5, the extinction (scattering plus absorption) coefficient.
Neglecting the scattering (S, = ., being 3, the absorption coefficient) we can express the infinitesimal
absorbed radiance dl,;, as:
dlgps = —Pqlds

On the other hand, the emitted radiance dl,,,;; is (Kirchhoff’s Law):

dlemit = ﬁaB(T)dS
being B(T) the blackbody radiance (Plank’s Law) as a function of temperature T:

3

e B(T)= %%, for the frequency f;

€ eRT—1

2hc 1
o B(T) = ——5— for the wavelength 4;

i Y
e B(T) = 2hc?v3 ———, for the wavenumber v = %;

e kT —1

with k being the Boltzmann constant and h the Plank constant.
The radiance balance is therefore:
dl = dlgps + dlomic = Bo(B(T) — Dds
Defining the optical depth as 7 = s, the equation above can be integrated along an optical depth t, bringing to:
10) =I1(x)e " =B(M)(e™"—1)
where 1(0) is the received radiance and I(z) a source term at distance s = —.

The HITRAN interface neglects any source term for simulating the radiance emitted by an homogeneous

medium. The simulations shown in next paragraph are obtained by the formula:

I'=B(MA—=T({,T))
being T(p,T) = e~ * = e~5faPT) the transmittance depending (through f£,) by the medium temperature and
pressure for taking into account the absorption/emission line shaping effects.

Being the HITRAN a spectral line database, for simulating the emission of a generic custom atmosphere,
the HITRAN interface used (HITRAN On The Web applet at hitran.iao.ru/home) calculates the absorption
coefficient for a user-selected gas mixture using the following formulas.

Being Kajm the monochromatic absorption line coefficient for a single molecular species for volume

unit, for a single spectral line corresponding to a transition between levels j and m at a given pressure p and
temperature T, The absorption coefficient K, at wavenumber WN (in cm™1), for a single molecule per unit
volume is obtained by summing over all the transitions j - m:

KoWN,T,p) = > Ky (WN,T,) em”
@ P = [, 4im P olecule
jm

For a gas mixture the partial absorption coefficients are weighted with the mixing ratios of these species.
The absorption coefficient 8, [cm™!] is then calculated as:

Ba(WN,T,p) = N K,(WN,T,p)

molecule

being N [ ] the number of absorbing molecules per volume unit considering a perfect gas.

cm3

2.2 Pollutant signal in atmospheric radiance: constant path

For this analysis, we have chosen the US-Standard 1976 atmosphere as unpolluted representative
atmosphere. We have set up three scenarios (using the HITRAN On The Web applet), as shown in the following
table:


http://hitran.iao.ru/home
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Altitude
0,

Press. Press. Temp.(K) asl. N2[1()/0) 02 (%) H20 Cco2 03

(Atm)  (hPa) (km) (ppm) (ppm) (ppm)
low

0.1 100 216 16 78.26615 21.70000 5.0 333@ 0.5
stratosphere
mid

0.01 10 227 31 78.26560 21.70000 5.0 333 @ 6.0
stratosphere
high

0.001 1 270 48 78.26595 21.70000 5.03 333 2.5
stratosphere

(1): N2 concentration is used for normalizing the sum to 100%.
(2): Underestimated with respect to actual values (the reference atmosphere is US 1977) but uninfluential.
(3): for high stratosphere overestimated water value (for worst-case scenario).

For investigating the effects of different pollutants present in the atmosphere and of
some interest for remote sensing measurements, we simulated the effects of a pure N2
atmosphere (transparent in the frequency range of interest) with each pollutant in realistic
atmospheric concentration. For pollutant present only in traces in atmosphere, we saturated
the concentration to the minimum concentration of 1.E-08 (ratio in volume).

The pollutant list is detailed in the following table, together with the concentration
used.

Applying the formulas described in par. 2.1, we have simulated the unpolluted
atmospheres for each case (Fig. 2.1 - Fig. 2.3), and compared with the ideal corresponding
blackbody spectrum.

Using the HITRAN simulation of the polluted atmospheres, the signal due to each single
pollutant can be analysed and compared with the background signal, as shown in next
paragraphs for each pollutant of the table, compared to the background atmospheric
spectrum (Fig. 2.4 - Fig. 2.12).

Pollutant Atmosphere composition Concentrations (%)

N20 N20 0.28ppm + N2 N20: 0.000028 N2:99.999972
03 03 2 ppm + N2 03: 0.000200 Nz: 99.999800
co CO 0.47ppm + N2 CO: 0.000047 N2:99.999953

CH4 CH4 1.48 ppm + N2 CH4: 0.000148 N2: 99.999852
NO NO 0.01ppm N2 NO: 0.000001 N2: 99.999999
S02 S02 0.08ppm + N2 S0O2: 0.000008 N2:99.999992

NO2 NO2 0.01ppm + N2 NO2: 0.000001 N2:99.999999

NH3 NH3 0.01ppm + N2 NHs: 0.000001 N2: 99.999999
OH OH 0.01ppm + N2 OH: 0.000001 N2: 99.999999
HCI HC1 0.01ppm + N2 HCI: 0.000001 N2: 99.999999

H2CO H2CO 0.01ppm + N2 H.CO0: 0.000001 Nz:99.999999
HOCI HOCI 0.01ppm + N2 HOCI: 0.000001 Nz: 99.999999
CH30H CH30H 0.01ppm + N2 N2: 99.999999 CH30H: 0.000001
H2S H2S 0.01ppm + N2 N2: 99.999999 HS: 0.000001
S03 S03 0.01ppm + N2 N2: 99.999999 S03: 0.000001
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Fig. 2.1: Simulated unpolluted atmospheric path of 10000 m at 0.1 atm. (16 km altitude) and comparison
with the corresponding blackbody spectrum.
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Fig. 2.2: Simulated unpolluted atmospheric path of 10000 m
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Fig. 2.3: Simulated unpolluted atmospheric path of 10000 m at 0.001 atm. (48 km altitude) and
comparison with the corresponding blackbody spectrum.
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2.2.1 N20
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Fig. 2.4: Radiance spectrum with spectral features of the typical concentration of N20 and the spectrum
for the corresponding unpolluted atmospheres at 16, 31 and 48 km for a 10000 m homogenous path.
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Fig. 2.5: Radiance spectrum with spectral features of the typical concentration of CO and the spectrum for
the corresponding unpolluted atmospheres at 16, 31 and 48 km for a 10000 m homogenous path.
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Fig. 2.6: Radiance spectrum with spectral features of the typical concentration of SO2 and the spectrum
for the corresponding unpolluted atmospheres at 16, 31 and 48 km for a 10000 m homogenous path.
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2.2.4 NH3
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Fig. 2.7: Radiance spectrum with spectral features of the typical concentration of NH3 and the spectrum
for the corresponding unpolluted atmospheres at 16, 31 and 48 km for a 10000 m homogenous path.
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2.2.5 OH
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Fig. 2.8: Radiance spectrum with spectral features of the typical concentration of OH and the spectrum
for the corresponding unpolluted atmospheres at 16, 31 and 48 km for a 10000 m homogenous path.
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2.2.6 HCI
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Fig. 2.9: Radiance spectrum with spectral features of the typical concentration of HCl and the spectrum
for the corresponding unpolluted atmospheres at 16, 31 and 48 km for a 10000 m homogenous path.
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Fig. 2.10: Radiance spectrum with spectral features of the typical concentration of H2CO and the
spectrum for the corresponding unpolluted atmospheres at 16, 31 and 48 km for a 10000 m homogenous
path.
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2.2.8 HOCI
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Fig. 2.11: Radiance spectrum with spectral features of the typical concentration of HOClI and the
spectrum for the corresponding unpolluted atmospheres at 16, 31 and 48 km for a 10000 m homogenous

path.
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Fig. 2.12: Radiance spectrum with spectral features of the typical concentration of H2S and the spectrum
for the corresponding unpolluted atmospheres at 16, 31 and 48 km for a 10000 m homogenous path.
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3 Atmospheric scenario in the range 600 GHz - 5 for different geometry of
observation

3.1 Mathematical background

If y(x) is a function tabulated for n points x; ,i = 0, ..., n so that y; = y(x;), the integral [ y(x) dx can be
written (linearly interpolating between the values at the points x;):

n-1
Sn 1
[ Ty dx =33 01y G - )
So i=0

If n = 2 (3 levels at s, 54, 5,) the formula becomes:

S 1
J- y(x) dx = E[(}’O + ¥ — x0) + 1 + ¥2) (2 — x1)]

S

5,=48 km hz =1(s2)
. =1I(s

=31 km L (=)
| =1I(s

So=16 km 17” (5)

Lower atmosphere (opaque)

Earth surface

Fig. 3.1: Geometry of observation for nadir view geometry

Considering the equation introduced in par. 2.1 for a uniform medium, we have (for a linearly
interpolated atmosphere between 3 levels, as in Fig. 3.1):

dl
== Ba($)(B(T(s)) —I(s))

whose integral between the levels s, and s,, becomes:
Sn
1) = 160) = [ BB E) - 1())ds
So

and substituting the integral with the sum we obtain:
1 n
1(s) = 1650) 45 ) (oo + ¥ (5t = 512)
i=1

being: Y; = B,(s))(B(T(s))) — 1(s)), I; = 1(sy), Ba; = Ba(si) and B(T (s;)) = B;.
In the following paragraphs we’ll consider a simple, 3 level model atmosphere. The equations became then:

Iy = 1(so)
1
L =1+ E{[ﬁao(Bo —1Ip) + Ba1(31 - 11)](51 - 50)}

1
L=+ E{[ﬁao(Bo —Ip) + .Bal(Bl - 11)](51 —50) + [:80.1(31 L)+ ﬁaz(Bz - 12)](52 - 51)} =

1
=hL+ E{[.Bal(Bl —-I)+ .Baz(Bz - 12)](52 - 51)}
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3.2 Nadir view from top of atmosphere: linearly interpolated levels model

The value for I, is given by the radiance reaching the level s, (for example the radiance emitted by
ground and lower atmospheric layers or the power emitted by an active source). The solution for the observed
radiance I, as a function of the radiance I, is then (with the same signs as in Fig. 3.1):

Uy

L=1I+ _[.Bao(BO — 1) + Ba, (B, — 1)](s1 = s0)

L=5L+ _[.Bal(Bl — 1) + Ba,(B, — )] (s, = s1)

—N

\S]

Solving the system and defining:

ASl =851 —95
ASZ =S, — 851

we calculate I; and I, as:

_ (2- BaOAS1)Io + AS1(,3alB1 + ,BaOBo)

L

Ba,Asy + 2
12 =
B [(BagAsy — 2)BayAs; — 2Baghsy + 4|lg + (BayAsy + 2)Ba,As,By + 2(As; + As;)Bay By + (2 = Ba, As3)Bayhsi By
(BayAsy + 2)Ba,Asy + 2,4, As; +4
or, also:
12 = aglo + a’sz + alBl + aoBo
with:

Y- (Baghsi — 2)Ba Asy — 2B, Asy + 4
7 (BayBsy + 2)Ba,Asy + 2Bo,Asy + 4
(2 - .BalASZ)BaOAsl

ao =
(BayAsy + 2)Bg,Asy + 2B, Asy + 4
o = 2(Asy + As1)Ba,
L=
(BayAsy + 2)Ba,Asy + 2B, As; + 4
(BayAsy + 2)Ba,As,
az =

 (Ba,Asy + 2)Ba,AS; + 2B, Asy + 4

The radiance I, observed in nadir direction (i.e. observing ground from the top of atmosphere) has been
calculated for a stratified unpolluted atmosphere. For the layers 0 - 3 the values used are from the atmospheres
described in par. 2.2 for the three different altitudes.

The corresponding radiance has been calculated also for different polluted atmospheres, in which the
absorption coefficient of each pollutant has been added to the absorption coefficient of the unpolluted
atmosphere, as in par. 2.2.1 - 2.2.9. In this way, each atmosphere has an observed radiance spectrum as a
function of each pollutant.
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3.2.1 NO2Z
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1.5E-07

1.0E-07

5.0E-08

Radiance (¥ cm sr-' {em-)")

0.0E+DO
20 205 21 21.5 22 22.5 23
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Fig. 3.2: Radiance spectrum with spectral features of the typical concentration of N20 for a nadir
(towards ground) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2.

Unpolluted vs. polluted atmosphere
1.4E-09 — Abs. diff. with/without N20 nadirview —— Rel. diff. withiwithout N20 nadir view
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Fig. 3.3: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of N20.
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3.2.2 CO

1.4E-06 — CO nadir view — Mo pollutants nadir view m‘
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Fig. 3.4: Radiance spectrum with spectral features of the typical concentration of CO for a nadir (towards
ground) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
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Fig. 3.5: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of CO.
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3.2.3 S02

1.4E-06 — 502 nadir view — Mo pollutants nadir view

)
=

T 1.2E-06
1.0E-06 ﬂp
8. 0E-07 Wm

6.0E-07

4 0E-0F

Radiance (Wecm? sr-' {cm)

2.0E-07

0.0E+DO -
20 30 40 50 60 70 a0

Wavelength {cm™)

Fig. 3.6: Radiance spectrum with spectral features of the typical concentration of SO2 for a nadir
(towards ground) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
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Fig. 3.7: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of SO2.
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3.2.4 NH3

— MNH32 nadir view — Mo pollutants nadir view
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Fig. 3.8: Radiance spectrum with spectral features of the typical concentration of NH3 for a nadir
(towards ground) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
1.2E-08 — Abs. diff. withiwithout NH3 nadirview —— Rel. diff. with/without NH2 nadir view
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Fig. 3.9: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of NH3.
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3.2.5 OH

— OH nadir view — Mo pollutants nadir view
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Fig. 3.10: Radiance spectrum with spectral features of the typical concentration of OH for a nadir
(towards ground) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
3.0E-08 — Abs. diff. withiwithout OH nadirview  —— Rel. diff. with/without OH nadir view
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Fig. 3.11: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of OH.
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3.2.6 HCI
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Fig. 3.12: Radiance spectrum with spectral features of the typical concentration of HCl for a nadir
(towards ground) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
4.0E-06 — Abs. diff. withiwithout HCI nadirview  —— Rel. diff. withiwithout HCI nadir view
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Fig. 3.13: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of HCI.
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3.2.7 H2CO
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Fig. 3.14: Radiance spectrum with spectral features of the typical concentration of H2CO for a nadir
(towards ground) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
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Fig. 3.15: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere introduced in par. 2.2 and the
same atmosphere with the typical concentration of H2CO.
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3.2.8 HOCI
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Fig. 3.16: Radiance spectrum with spectral features of the typical concentration of HOCI for a nadir
(towards ground) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
8.0e-07 — Abs. diff. withiwithout HOCI nadir view —— Rel. diff. withiwithout HOCI nadir view
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Fig. 3.17: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of HOCI.
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3.2.9 H2S
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Fig. 3.18: Radiance spectrum with spectral features of the typical concentration of H2S for a nadir
(towards ground) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
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Fig. 3.19: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of H2S.
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3.3 Zenith view from lower atmosphere: linearly interpolated level model

We calculate I'y = —I, (down-welling radiance received at the lower level) as a function of I'; = —I; and
I'; = —I, using the same formula:

I = (2 - ﬁa0A51)1’2 - ASl(ﬁaoBo + ﬁalBl)
! Ba,As; +2

1’0 =
[(ﬂa0A51 - Z)ﬂalAsz — 2,051 + 4]1’2 - (ﬁa1A51 + Z)ﬁazAssz —2(As; + Asl)ﬁalBl - (2 - ﬁa1A52)3a0A51Bo
(BayAsy + 2)Ba,Asy + 2B, Asy + 4

and, setting I’y = 0 (no source term from space), we obtain:

_ (BayAsy + 2)Ba,As,B, + 2(As; + Asy)Bay By + (2 — BayAsy)BayAsi B
(BayAsy + 2)Ba,Asy + 2B, Asy + 4

I’O =

where the minus sign is due to the direction of the system of reference (i.e. the radiance is received oppositely to
the vertical axis).

S
s,=48 km r'Z = -I(s2)
I’ =-I(s
$;=31 km r“ (s)
I’ =-I(s
So=16 km 0 ( 0)

4—T

Lower atmosphere (opaque)

Earth surface

Fig. 3.20: Geometry of observation for nadir view geometry

For the radiance I’y and for a zenith view (i.e. observing the top of atmosphere from s,) the same charts
as in par.3.2 have been evaluated, comparing the radiance from an unpolluted atmosphere with the radiance of a
polluted ones for each pollutant.
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3.3.1 N20
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Fig. 3.21: Radiance spectrum with spectral features of the typical concentration of N20 for a zenith
(towards the top of atmosphere) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Polluted vs. unpoliuted atmosphere
1.2E-09 — Abs. diff. withiwithout N20 zenith view Rel. diff. withfwithout N20 zenith view
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Fig. 3.22: Absolute and relative difference for the radiance spectrum of the atmosphere introduced in
par. 2.2 with the typical concentration of N20 and the corresponding unpolluted atmosphere.
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3.3.2 CO
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Fig. 3.23: Radiance spectrum with spectral features of the typical concentration of CO for a zenith
(towards the top of atmosphere) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Polluted vs. unpoliuted atmosphere
4.0E-08 — Abs. diff. withiwithout CO zenith view Rel. diff. withiwithout CO zenith view
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Fig. 3.24: Absolute and relative difference for the radiance spectrum of the atmosphere introduced in
par. 2.2 with the typical concentration of CO and the corresponding unpolluted atmosphere.
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3.3.3 $02
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Fig. 3.25: Radiance spectrum with spectral features of the typical concentration of SO2 for a zenith
(towards the top of atmosphere) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Polluted vs. unpoliuted atmosphere
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Fig. 3.26: Absolute and relative difference for the radiance spectrum of the atmosphere introduced in
par. 2.2 with the typical concentration of SO2 and the corresponding unpolluted atmosphere.
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3.3.4 NH3
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Fig. 3.27: Radiance spectrum with spectral features of the typical concentration of NH3 for a zenith
(towards the top of atmosphere) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Polluted vs. unpoliuted atmosphere
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Fig. 3.28: Absolute and relative difference for the radiance spectrum of the atmosphere introduced in
par. 2.2 with the typical concentration of NH3 and the corresponding unpolluted atmosphere.
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3.3.5 OH
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Fig. 3.29: Radiance spectrum with spectral features of the typical concentration of OH for a zenith
(towards the top of atmosphere) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Polluted vs. unpolluted atmosphere
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Fig. 3.30: Absolute and relative difference for the radiance spectrum of the atmosphere introduced in
par. 2.2 with the typical concentration of OH and the corresponding unpolluted atmosphere.
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3.3.6 HCI
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Fig. 3.31: Radiance spectrum with spectral features of the typical concentration of HCl for a zenith
(towards the top of atmosphere) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Polluted vs. unpolluted atmosphere

- 25E-06 —— Abs. diff. withiwithout HCl zenith view Rel. diff. with/without HCI zenith view 3

: 25

£ 20606 5

5 _E

“@ £ ‘;’

£ 1.5E-06 g

z -

] o E

[ X} .

£ 1.0E-06 =

S 1 £

£ E

o 5.0E-07 .
|:| =1

E ot

[=]

2

< 0.0E+D0 - : 1 “

40 60 a0 100 120 140 160
Wavelength {cm}

Fig. 3.32: Absolute and relative difference for the radiance spectrum of the atmosphere introduced in
par. 2.2 with the typical concentration of HCl and the corresponding unpolluted atmosphere.
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3.3.7 H2CO
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Fig. 3.33: Radiance spectrum with spectral features of the typical concentration of H2CO for a zenith
(towards the top of atmosphere) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Polluted vs. unpoliuted atmosphere
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Fig. 3.34: Absolute and relative difference for the radiance spectrum of the atmosphere introduced in

par. 2.2 with the typical concentration of H2CO and the corresponding unpolluted atmosphere.
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3.3.8 HOCI
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Fig. 3.35: Radiance spectrum with spectral features of the typical concentration of HOCI for a zenith
(towards the top of atmosphere) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Polluted vs. unpoliuted atmosphere
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Fig. 3.36: Absolute and relative difference for the radiance spectrum of the atmosphere introduced in
par. 2.2 with the typical concentration of HOCI and the corresponding unpolluted atmosphere.
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3.3.9 H2S
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Fig. 3.37: Radiance spectrum with spectral features of the typical concentration of H2S for a zenith
(towards the top of atmosphere) view in a 3 level linearly interpolated atmosphere introduced in par. 2.2

Polluted vs. unpoliuted atmosphere
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Fig. 3.38: Absolute and relative difference for the radiance spectrum of the atmosphere introduced in
par. 2.2 with the typical concentration of H2S and the corresponding unpolluted atmosphere.
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3.4 Equivalent constant layer model

The terms ag, @y, a;, @, introduced in par. 3.2 can be seen as function of the transmittances Ty, To1, T12,
T,. and emissivity &, &;, &, of the layers of an equivalent model with constant (i.e. non-interpolated) absorption
coefficients and temperature (Fig. 3.39).

ag = TgoTo1T12T2w0
g = €0T01T12T200 = (1 - TgO)T01T12T200
a; = &T13Th0 = (1 - Tg0T01)T12T200
Ay = 6T = (1 - TgoT01T12)T2c>o

S
T?m
S,=48 km
IT'I?
51=31 km
Ir.
So=16 km

Earth surface

Fig. 3.39: Transmittances of the equivalent constant layers model. Each layer has constant
transmittance and temperature. The emissivity of each level can be seen as 1 minus the transmittances

of the lower levels.

The inversion of the system brings to the expressions for the equivalent transmittances of the
corresponding constant-layer model:

a

g
T =
g0
ag +ag
T _ag+a0
01 = |
ag +aq
T _ozg+a1
12 —
ay + a,

Teo = g+ ay
where the terms a4, @y, @4, @, have to be calculated considering the absorptions given by all the different species

of each level and the right values for As;, As, (i.e. in case of diagonal crossing of the layer they must be scaled
according with the cosine law).

3.5 Limb view

Considering the model described in par. 3.1, we modify the equations for taking into account the limb
geometry of Fig. 3.40:

In
I(T) — 1) = | Ba(DBT D) — 1(D)dl
lo
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S,=48 km
1'5,=31 km
So=16 km

Fig. 3.40: Calculation of dl (a) and geometry of observation for two different limb view geometry in black
and red (b).

being l,,...l,, the points along the paths ! in Fig. 3.40.
Following the linear approximation we have:

1
I = lo + 5 [Bag(Bo = Io) + fay (B = )] (l — ko)

L=1 +%[ﬁa1(31 -L)+ ﬁaz(Bz - 12)](l2 -L)

For symmetry, it follows also:
14_ = 212

We solving the system defining (being R the Earth radius):

Alyy =11_lo=\/(R+51)2_(R+50)2
Allz =l2_l1 :\/(R+Sz)2_(R+So)2
10:0

and we calculate I; and I, as:

= Alo1(ﬁa131 + BaoBo)
BalAlol +2
L= (3a1Alo1 + Z)BazAluBz + 2(Aly; + Alg1)fa, By + (2- ﬁalAlu)ﬁaoAlmBo
2 (BayAlos + 2)BayAlis + 24, Algy + 4
[ =2 (ﬂalAlm + Z)BazAluBz + 2(Aly; + Alg1)Ba, By + (2- BalAlu)BaoAlmBo
N (BayAloy + 2)BayBlyy + 24, Algy + 4

or, as for the nadir view case without ground contribution:
I, = 2(a,B, + a;B; + ayBy)

with:
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(2 - ﬁalAllz)ﬁaoAZOI

0[0 =
(BayAloy + 2)Ba,Aliz + 24, Algy + 4
o = 2(As; + Asy)Ba,
L=
(BayBlos + 2)Ba,Aliy + 2Bo Algy + 4
o, = (ﬁalAIOI + z)ﬁazAIIZ
, =
(BayAloy + 2)Ba,Aliz + 24, Algy + 4
3.5.1 NO2
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Fig. 3.41: Radiance spectrum with spectral features of the typical concentration of N20 for limb view in a

3 level linearly interpolated atmosphere introduced in par. 2.2.

Unpolluted vs. polluted atmosphere
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Fig. 3.42: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere

introduced in par. 2.2 and the same atmosphere with the typical concentration of N20.



Nardino, Baldi, vol. 10 (2018) 49-96

3.5.2 CO
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Fig. 3.43: Radiance spectrum with spectral features of the typical concentration of CO for limb view in a 3
level linearly interpolated atmosphere introduced in par. 2.2
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Fig. 3.44: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere

introduced in par. 2.2 and the same atmosphere with the typical concentration of CO.
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3.5.3 S02
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Fig. 3.45: Radiance spectrum with spectral features of the typical concentration of SO2 for limb view in a
3 level linearly interpolated atmosphere introduced in par. 2.2
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Fig. 3.46: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of SO2.
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3.5.4 NH3
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Fig. 3.47: Radiance spectrum with spectral features of the typical concentration of NH3 for limb view in a
3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
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Fig. 3.48: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of NH3.
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3.5.5 OH
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Fig. 3.49: Radiance spectrum with spectral features of the typical concentration of OH for limb view in a 3
level linearly interpolated atmosphere introduced in par. 2.2
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Fig. 3.50: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of OH.
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3.5.6 HCI
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Fig. 3.51: Radiance spectrum with spectral features of the typical concentration of HCI for limb view in a
3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
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Fig. 3.52: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of HCI.
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3.5.7 H2CO
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Fig. 3.53: Radiance spectrum with spectral features of the typical concentration of H2CO for limb view in
a 3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
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Fig. 3.54: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of H2CO.
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3.5.8 HOCI
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Fig. 3.55: Radiance spectrum with spectral features of the typical concentration of HOCI for limb view in a
3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
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Fig. 3.56: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of HOCI.
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3.5.9 HZS
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Fig. 3.57: Radiance spectrum with spectral features of the typical concentration of H2S for limb view in a
3 level linearly interpolated atmosphere introduced in par. 2.2

Unpolluted vs. polluted atmosphere
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Fig. 3.58: Absolute and relative difference for the radiance spectrum of the unpolluted atmosphere
introduced in par. 2.2 and the same atmosphere with the typical concentration of H2S.



Nardino, Baldi, vol. 10 (2018) 49-96 96

4 Conclusions

This report shows the main characteristics of atmospheric absorbers in the terahertz spectral region,
being the interval of interest in the framework of DIAST project. The simulated atmospheres presented in this
document have being considered for the designs of different kind of spectroradiometers. The estimate of the
instrumental characteristic SNR has been performed for different line of sight in typical working scenarios as a
function of the integration time and bandwidth.



