

IFAC-TSRR-TR-10-010 (65-9) ISSN 2035-5831

IFAC-TSRR vol. 2 (2010) 169-183

Exploiting web resources for the identification of relations
between concepts:

a Java based implementation and case study

Francesco Gabbanini(1),

(1) IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy

ICT.P10.007.001 – Responsabile Scientifico della Ricerca: Laura Burzagli

170 F. Gabbanini, TSRR vol. 2 (2010) 169-183

1 - Introduction

A Java based implementation of an Ontology Evolution Manager was described in Gabbanini
(2010): it is a framework offering a set of tools to support processes of manipulation and growth of
ontological knowledge bases, based on inputs consisting in free text documents.

The Ontology Evolution Manager can be used to support the process of Ontology Evolution, i.e.,
the process of identifying potential novel entities and relationships to be included in an established
ontology.

This report describes a Java based application, built using the Ontology Evolution Manager,
intended to perform ontology evolution processes, by enriching ontologies with new relations. The
enrichment phase uses as sources of background knowledge the WordNet repository (see WordNet, 2010)
and the Scarlet system (Sabou et al., 2008, Sabou et al., 2008b, Scarlet, 2010). The application is based on
ideas described in Zablith et al. (2009), but new ideas have been introduced and the code has been
implemented from scratch by the author, so as to be reusable within the framework of the Collective
Knowledge Management System described by Burzagli et al. (2010).

The report describes techniques and implementation details, along with a test case in which an
ontology, built within the e-Inclusion Laboratory1 to describe the domain of inclusive tourism, is enriched
with entities and relationships generated from the analysis of textual reviews, contributed by customers of a
real web based service that allows booking and commenting on the accessibility of a selection of
accommodation resources all over the world.

2 - The entity and relation extraction engine

The entity and relation extraction engine described in this report is a system that takes advantage of
background information to identify new entities and relations, which are then used to enrich ontologies.
Such an engine was implemented using the Ontology Evolution Manager framework described in
Gabbanini (2010).

In order to achieve its aims, the engine goes through three fundamental steps, which are
represented by:

1. Identifying key terms in a given corpus of text documents;
2. Check for relationships between the identified terms and entities that are present in a reference

ontology;
3. Add novel entities and relationships to the ontology.

This 3-step process has been modelled using classes that are structured according to the UML

diagram in Fig. 1. When reading this paper, it is to be noted that references are sometimes made to classes
and interfaces which in Fig. 1 are contained within the box named Annotation System (top left corner of Fig.
1): for a more detailed description of them, the interested reader should refer to Gabbanini (2010).

The central point of the relation identification and extraction process is represented by the
SimpleRelationExtractor class, which is able to process a corpus of text documents, extract terms and relate
them to terms contained in a given reference terms set, by using relation manager objects, described later on
in the report.

The reference terms set consists in terms representing concepts that are contained in the ontology
which is to be enriched through the evolution process. This means that it is necessary to start up the process
with a valid ontology which, in the case examined by this report, was set up by the e-Inclusion Lab by
taking advantage of work done by a team of professionals in the field of accessible tourism, during the EU
CARE project2. The ontology is meant to describe physical characteristics of inner spaces of touristic

1 See http://eilab.ifac.cnr.it, last visited on 27/10/2010.
2 See http://www.interreg-care.org/site/, the site was last visited on 12/10/2010. As of 26/10/2010 it seems to be down

for maintenance.

F. Gabbanini, TSRR vol. 2 (2010) 169-183 171

accommodations: while its building process is out of the scope of this report, an excerpt of the resulting
ontology, which was used for testing purposes, is shown in Fig. 2.

Fig. 1 - UML class diagram of the Ontology Evolution Manager.

3	- The evolution process

The entry point for the evolution process is represented by the
SimpleRelationExtractor class (see code in Tab. 2), which allows using an arbitrary set of relation
finding engines through the use of a visitor pattern (Gamma et al., 1995), as described in section 3.1.
Specifically, the starting point for the relation discovery process is the extractRelations method,
taking as an input a set of reference terms, which is a set of String objects, designed to detect similarities
between strings in such a way that, for example, “river” and “rivrer” are treated as being the same word:
this strategy is adopted to check that no identical or highly similar terms are contained in the list and also
allows accounting for spelling or typing errors. In order to obtain this behaviour, the set of reference terms
is implemented using an object of WordSet class (see code in Tab. 3). WordSet extends the HashSet
class, of which it overrides the contains method by making use of a suitable string distance function.

The string distance is computed using a class implementing the StringDistance interface, as
defined in the SecondString library (SecondString, 2010). This library is an open-source Java-based
package of approximate string-matching techniques, developed by researchers at Carnegie Mellon
University from the Center for Automated Learning and Discovery, the Department of Statistics, and the
Center for Computer and Communications Security. The package contains a wide range of implementations
of string distance functions: the chosen distance function for the integration within the
SimpleRelationExtractor was the Jaro-Winkler metric, described in Winkler (1999), which is in
turn a refinement of the distance described in Jaro (1995). The distance is available from the SecondString
library’s JaroWinkler class.

172 F. Gabbanini, TSRR vol. 2 (2010) 169-183

Fig. 2. Excerpt from the test ontology, describing the tourism domain.

3.1 - Parsing the corpus for new terms

In order to search for relations, the SimpleRelationExtractor needs to be provided with a
set of terms to match with those in the reference list. This is achieved by taking advantage of the
GateManager class. The rest of this section describes the process more in depth.

Firstly, the SimpleRelationExtractor class is designed to implement an IProcessor
interface. This interface has been introduced to identify any resource that uses text processing
functionalities provided by the GATE framework. Its implementation requires specifying four fundamental
methods:

 initResources: allows to initialize the Natural Language Processing system, by setting up
appropriate plugins and resources;

 processCorpus: allows to process a corpus of textual documents;
 processText: allows to process a string of text;
 releaseResources: allows to release language processing resources.

As for the initialization of natural language processing resources, the process is supported by the

Annotation System through the use of registers implementing the RegisterVisitor interface. The
processing phase produces annotations that are parsed through parser classes implementing the
AnnotationParserVisitor interface (for more details see Gabbanini (2010)). In order to obtain
suitable annotations for the relation discovery process, a new register and a new parser were written and
added to the Annotation System. The POSTaggerRegister serves to annotate text with information
regarding which part of speech the various words contained in the text documents represent, while the
POSTaggerParser is meant to interpret those annotations and to filter them in order to obtain sets of

F. Gabbanini, TSRR vol. 2 (2010) 169-183 173

words representing relevant parts of speech (for example, for obtaining only the adverbs, or only the verbs
and proper nouns etc…).

This mechanism was used to extract singular and plural nouns from the text corpus that was chosen
to provide input to the ontology evolution process. These are the terms for which relations with existing
concepts in the ontology have to be investigated.

3.2 - Finding relations: the RelationManager

The process of finding relations is handled by the RelationManager class (see code in Tab. 4),
and is based on a visitor pattern. The RelationManager allows registering instances of different classes
that are capable of performing relation discovery between terms. Each class has to implement the
IRelationFinder interface. For the purpose of the example described in this report, two classes were
designed to be employed for the relation discovery process: the WNRelationFinder class (see code in
Tab. 5) and the ScarletRelationFinder class (see Fig. 1, top right corner). The latter is based on
Scarlet (see Sabou et al., 2008), a third party Java software library implementing techniques for discovering
relations between two concepts by harvesting the Semantic Web, i.e., by automatically finding and
exploring multiple and heterogeneous online ontologies.

The WNRelationFinder class was written from scratch and is built to exploit WordNet synsets
and the hypernym/hyponym-holonym/meronym concepts. Actually, WordNet (see WordNet, 2010) is a
lexical database that, for each English word, is able to provide a set of synonyms called synsets. Each synset
is related to other synsets by a number of semantic relations. These relations vary based on the type of
word, and include, in the case of nouns:

 hypernym: Y is a hypernym of X if every X is a (kind of) Y (canine is a hypernym of dog,
because every dog is a member of the larger category of canines)

 hyponym: Y is a hyponym of X if every Y is a (kind of) X (dog is a hyponym of canine)
 instance hypernym: Y is a instance-hypernym of X if X is an instance of Y (author is an

instance hypernym of Jane Austen);
 instance hyponym: Y is a instance-hyponym of X if Y is an instance of X (Jane Austen is an

instance hyponym of author);
 holonym:

o part: Y is a part-holonym of X if X is a part of Y (building is a holonym of window)
o member: Y is a member-holonym of X if X is a member of Y (faculty is a member

holonym of professor);
o substance: Y is a substance-holonym of X if X is a substance of Y (bread is a

substance holonym of flour)
 meronym:

o part: Y is a part-meronym of X if Y is a part of X (window is a meronym of building)
o member: Y is a member-meronym of X if Y is a member of X (professor is a member

meronym of faculty);
o substance: Y is a substance-meronym of X if Y is a substance of X (flour is a

substance meronym of bread).

Semantic relations between WordNet synsets are used to derive new relations between terms in the
ontology and terms in the text corpus.

In order to access WordNet and navigate its database, the Java Wordnet Interface (JWI, see JWI,
2010), developed by the MIT, was used. The WNRelationFinder uses the JWI within a recursive
algorithm that was designed to walk across the semantic relations tree until it finds that one of the
previously listed relations is involving two given terms. When the process ends up, the relation finder
returns a list of BinaryRelation objects, each relating a pair of terms (one from the corpus and one
representing an entity in the ontology) according to a specified relation. It is then the responsibility of the
Ontology Persistence Layer to translate relations into valid RDF and OWL statements that enrich the
ontology.

An excerpt of the code that implements the relation discovery process is given in Tables 1 to 5.

174 F. Gabbanini, TSRR vol. 2 (2010) 169-183

Tab. 1. Excerpt of the code implementing the overall relation extraction process.

@Test
public class OntoEvolutionTest {

private HashSet<String> owlEntities;
private final String baseURI = "...";

@Before
public void setUp() throws Exception {
 getOWLEntities();
}

public void testAddRelations() throws (...) {
 List<BinaryRelation<String>> relations = extractRelations();
 OWLOntologyManager manager =

OWLManager.createOWLOntologyManager();
 OWLOntology owlOntology =

manager.loadOntologyFromOntologyDocument(...);
 OWLDataFactory owlDataFactory = manager.getOWLDataFactory();
 AxiomManager axiomManager = new AxiomManager(owlDataFactory,

baseURI);
 for(BinaryRelation<String> relation : relations) {
 String t1 = relation.getFirstTerm();
 String t2 = relation.getSecondTerm();

 Set<AddAxiom> axioms = axiomManager.getAxiom(owlOntology,

t1, t2, relation.getRelation());

 for(AddAxiom axiom : axioms) {
 manager.applyChange(axiom);
 }

 OutputStream outputStream = new FileOutputStream("...");
 manager.saveOntology(owlOntology, outputStream);
 }
}

private List<BinaryRelation<String>> extractRelations() throws

(...) {
 SimpleRelationExtractor relationExtractor = new

SimpleRelationExtractor();
 relationExtractor.processCorpus(corpusPath, corpusExt);
 List<BinaryRelation<String>> relations =

relationExtractor.extractRelations(owlEntities);
 return relations;
}

private void getOWLEntities() throws

OWLOntologyCreationException {
 //loads entities from the ontology (code not shown)
}

}

F. Gabbanini, TSRR vol. 2 (2010) 169-183 175

Tab. 2. Implementation details: the SimpleRelationExtractor and WNRelationSet classes. It is to be noted
that meronym and hyponym relations are exploited by symmetry.

public class SimpleRelationExtractor implements IProcessor {
private WordSet referenceTermList;
private List<BinaryRelation<String>> relations;

@Override
public void initResources() throws (...) {
 GateManager.getInstance().registerPlugin("ANNIE");
 GateManager.getInstance().registerResource(new

AnnotationDeleteRegister());
 GateManager.getInstance().registerResource(new

SentenceSplitterRegister());
 GateManager.getInstance().registerResource(new

DefaultTokenizerRegister());
 GateManager.getInstance().registerResource(new

POSTaggerRegister());
}

@Override
public void processCorpus(String pathName, String ext) throws

(...) {
 initResources();
 ...
 GateManager.getInstance().elaborateCorpus();
}

public List<BinaryRelation<String>>

extractRelations(Collection<String> referenceTerms) throws (...) {
 referenceTermList = new WordSet(new JaroWinkler());
 referenceTermList.addAll(referenceTerms);

 Set<String> extractNouns = extractNouns();
 relations = new ArrayList<BinaryRelation<String>>();

 for(String noun : extractNouns) {
 if(noun.length() > 2) {
 findRelations(noun);
 }
 }
 return relations;
}
private void findRelations(String noun) throws (...) {
 if(referenceTermList.contains(noun)) {
 return;
 }
 for(String refString : referenceTermList) {
 findRelationAbout(refString, noun);
 }
}
private void findRelationAbout(String referenceTerm, String

noun) throws (...) {

 List<IWord> iWords =

JWI.getInstance().getIWords(referenceTerm);
 if(iWords == null) return;
 IWord ontoLabelWord = iWords.get(0);

 iWords = JWI.getInstance().getIWords(noun);

176 F. Gabbanini, TSRR vol. 2 (2010) 169-183

 if(iWords == null) return;
 IWord nounWord = iWords.get(0);

 RelationManager relationManager = new RelationManager();
 WNRelationFinder wnRelationFinder = new

WNRelationFinder(ontoLabelWord, nounWord, new
WNRelationSet().initDefaults());

 relationManager.registerRelationFinder(wnRelationFinder);
 relationManager.registerRelationFinder(new

ScarletRelationFinder(ontoLabel, noun));

 if (relationManager.getRelations() != null &&

relationManager.getRelations().size() > 0) {
 relations.addAll(relationManager.getRelations());
 }

}
}

public class WNRelationSet implements Iterable<IPointer> {
private HashSet<IPointer> relationPointers = new

HashSet<IPointer>();

public void addPointer(IPointer p) {
 relationPointers.add(p);
}
public WNRelationSet initDefaults() {
 relationPointers.clear();
 relationPointers.add(Pointer.HOLONYM_MEMBER);
 relationPointers.add(Pointer.HOLONYM_PART);
 relationPointers.add(Pointer.HOLONYM_SUBSTANCE);

 relationPointers.add(Pointer.HYPERNYM);
 relationPointers.add(Pointer.HYPERNYM_INSTANCE);

 return this;
}
@Override
public Iterator<IPointer> iterator() {
 return relationPointers.iterator();
}
}

Tab. 3. Implementation details: the WordSet class

public class WordSet extends HashSet<String> {

private StringDistance distance;
private float threshold;
public WordSet(StringDistance distance) {
 this.distance = distance;
 threshold = 0.95f;
}

@Override
public boolean contains(Object noun) {
 if(distance == null)
 return super.contains(noun);
 for(String s : this) {

F. Gabbanini, TSRR vol. 2 (2010) 169-183 177

 if (distance.score(s, noun.toString()) > threshold) {
 return true;
 }
 }
 return false;
}

public String find(String noun) {
 for(String s : this) {
 if (distance.score(s, noun.toString()) > threshold) {
 return s;
 }
 }
 return null;
}
}

Tab. 4 - Implementation details: the RelationManager class

public class RelationManager {

List<BinaryRelation<String>> relations = new

ArrayList<BinaryRelation<String>>();
public void registerRelationFinder(IRelationFinder

relationFinder) throws
RelationFinderException {
 relationFinder.visit(this);
}
public void addRelation(BinaryRelation<String> relation) {
 relations.add(relation);
}
public List<BinaryRelation<String>> getRelations() {
 return relations;
}
}

Tab. 5. Implementation details: the WNRelationFinder class

public class WNRelationFinder implements IRelationFinder {
private IWord originalWord;
private IWord secondWord;
private WNRelationSet relationSet;

public WNRelationFinder(IWord originalWord, IWord secondWord,

WNRelationSet relationSet) {
 this.originalWord = originalWord;
 this.secondWord = secondWord;
 this.relationSet = relationSet;
}

@Override
public void visit(RelationManager relationFinder) throws

RelationFinderException {
 for(IPointer relPointer : relationSet) {
 exploitRelation(relationFinder, relPointer);
 }
}

178 F. Gabbanini, TSRR vol. 2 (2010) 169-183

private void exploitRelation(RelationManager relationFinder,
IPointer relPointer) throws RelationFinderException {

 try {
 List<BinaryRelation<IWord>> relations =

findRelations(originalWord, secondWord, relPointer);
 for(BinaryRelation<IWord> binaryRelation : relations) {
 BinaryRelation<String> stringRelation = new

BinaryRelation<String>(binaryRelation.getFirstTerm().getLemma(),
binaryRelation.getSecondTerm().getLemma(),
binaryRelation.getRelation());

 relationFinder.addRelation(stringRelation);
 }
 } catch (MalformedURLException e) {
 throw new RelationFinderException(e.getMessage());
 }
}

private List<BinaryRelation<IWord>> findRelations(IWord fWord,

IWord sWord, IPointer relPointer) throws MalformedURLException,
RelationFinderException {

 List<BinaryRelation<IWord>> relations = new

ArrayList<BinaryRelation<IWord>>();

 SynsetHierarchyBuilder hierarchyBuilder = new

SynsetHierarchyBuilder();
 SynsetHierarchy synsetHierarchy1 =

hierarchyBuilder.build(fWord, relPointer);

 //is "sWord" in the synset of type "pointer" of "word"?
 BinaryRelation<IWord> relation = findRelations(fWord, sWord,

synsetHierarchy1);
 if (relation != null) {
 relations.add(relation);
 return relations;
 }

 SynsetHierarchy synsetHierarchy2 =

hierarchyBuilder.build(sWord, relPointer);

 //is "word" in the synset of type "pointer" of "sWord"?
 relation = findRelations(sWord, fWord, synsetHierarchy2);
 if (relation != null) {
 relations.add(relation);
 return relations;
 }

 return relations;

}

private BinaryRelation<IWord> findRelations(IWord firstWord,

IWord secondWord, SynsetHierarchy synsetHierarchy) throws
RelationFinderException {

 ISynset sSynset = secondWord.getSynset();
 for(ISynset synset : synsetHierarchy) {
 if(synset.equals(sSynset)) {
 return buildRelation(firstWord, secondWord,

synsetHierarchy.getPointerType());

F. Gabbanini, TSRR vol. 2 (2010) 169-183 179

 }
 }
 return null;
}

private BinaryRelation<IWord> buildRelation(IWord

firstRelationTerm, IWord secondRelationTerm, IPointer pointerType)
throws RelationFinderException {

 //builds an appropriate BinaryRelation...
}
}

4 - A sample test case

In order to evaluate the correctness and validity (at least, from a technical point of view) of the
approach, a sample application was setup in which the ontology introduced in section 3 (see Fig. 2 for an
excerpt) is to be enriched by inspection of a corpus of text documents consisting in 88 user generated
reviews, taken from the website http://www.accessatlast.com. Each review is expressed as free
text and reflects the opinion of a user regarding an accommodation that s/he has stayed in. It is to be noted
that the example does not use the relation finding engine based on Scarlet, but only the one based on
WordNet.

A POSTaggerParser object was used to parse the 88 reviews, in order to provide the system
with a list of 779 terms (after filtering out for similarities, see section 3), which represent candidate terms
for relation discovery. These terms are then matched with terms denoting entities contained in the ontology.
In this way, the relation discovery engine discovers 42 relations, of which 15 are part meronym relations
and the rest are hyponym relations. It is to be noted that in this example, only the first WordNet synset of
each term, which represent the most common (according to WordNet statistics) sense in which the term
itself is used, is exploited for the relation discovery process.

Tab. 6. Relations identified by the SimpleRelationExtractor after parsing a corpus of 88 reviews from
http://www.accessatlast.com.

Term Relation Term Term Relation Term

Barn subClassOf Building Sofa subClassOf Furniture
Architecture subClassOf Building Dresser subClassOf Furniture
Cottage subClassOf Building Bed subClassOf Furniture
Castle subClassOf Building House subClassOf Building
Bar subClassOf Room GuestHouse subClassOf House
Chalet subClassOf Building Restaurant subClassOf Building
Chair subClassOf Furniture Resort subClassOf Building
BookCase subClassOf Furniture Resort subClassOf Hotel
Table subClassOf Group Hospital subClassOf Building
Stairs subClassOf Stairway Wheelchair subClassOf Chair
Wall partOf Building Wall partOf Room
Doorway partOf Wall Wall partOf Hallway
Wall partOf Hall Garage subClassOf Building
Door partOf Building Door partOf Room
Door partOf Doorway Door partOf Hallway
Door partOf Hall Carport subClassOf Building
Tub partOf Bathroom Towel subClassOf Piece
Floor partOf Building Floor partOf Room
Floor partOf Hallway Floor partOf Hall
Doorway subClassOf Entrance Step subClassOf Selection
solarium subClassOf Room Sauna subClassOf Room

180 F. Gabbanini, TSRR vol. 2 (2010) 169-183

Tab. 6 lists all the newly discovered relations that link novel terms to existing entities in the
ontology. Regarding the insertion of new relations into the ontology, when two terms X and Y are
discovered to be related by a subClassOf relation, a corresponding rdfs:subClassOf assertion is built to
enrich the ontology. When X and Y are related by a partOf relation, an object property isPartOf, whose
domain is X and whose range is Y, is added to the ontology.

While most of the all the triples listed in Tab. 6 define statements that seem to be consistent with
the given context and the given domain of interest (i.e., describing the physical characteristics of
accommodations), the ones with a grey background in Tab. 6 merit attention:

 The term Table is related to Group, which does not seem to be a good fit for the domain,
probably due to the fact that one of the WordNet synsets of Table has the meaning “a company
of people assembled at a table for a meal or game”; in this case it would have been probably
better not to add the triple at all;

 The term Step is related to Selection, because it is taken in the sense of “any maneuver made as
part of progress toward a goal”; again, the relation does not fit the particular context under
study.

It is also interesting to note that a set of entities (Sofa, Dresser, Bed, Chair, BookCase) are related
to the term Furniture through the subClassOf relation, and they were already related to FurniturePiece in
the ontology, through the same relation: in such cases (i.e., when X subClassOf Y and X subClassOf Z) it
would be interesting to set up a procedure to check for some kind of relation between Y and Z. In this
particular case it would probably be an equivalence relation as the two terms are synonyms.

5 - A refinement of the relation extraction process

The results highlighted in Tab. 6 and discussed in section 4 were a starting point from which a new
refined version of the relation extractor was implemented. The main driving idea for the implementation
was to avoid getting relations which are plainly and noticeably “out of context”, which means that the
relation finding engine takes one or both of the terms in a sense that does not match the context induced by
the corpus of text documents taken as a source of background knowledge. As previously pointed out (see
previous section), an example is given by the relations Table-subClassOf-Group and Step-subClassOf-
Choice.

In order to achieve the desired aim, the relation finding engine was modified as follows. As a first
step the WordNet database was used to identify, for any given term, a set of so called coordinate terms,
defined as the set of terms having a common hypernym in WordNet. The coordinate terms set is meant to
contain semantically related terms. Clearly, based on the same term, different coordinate term sets will be
obtained depending on which of the semantic senses is considered (i.e., depending on which WordNet
synset is used for a given word). As an example, the set of coordinate terms for the word “group” is
reported in Tab. 7.

In order to check which of the many possible senses of a certain word has to be taken into account
by the relation discovering engine, a strategy was set up to measure the “degree of consistency” between a
word sense and the context induced by the corpus of documents which are under exam. This context is
modelled using the concept of Tag Cloud3, which is common in the world of Web 2.0, and is used to
collect a list of the n most used terms in a corpus, along with their relative frequency in the texts. The idea
is that a Tag Cloud can give a representation of “what the corpus is about” and that the intersection between
the coordinate terms set of a given term and the Tag Cloud “measures” to which extent the term itself
matches a certain context.

Tab. 7. Three different senses for the word “group” (source WordNet), and their coordinate terms.
Sense Coordinate terms

Any number of entities (members) considered
as a unit

amount, measure, grouping, communication,
set, relation, attribute, quantity, group,
otherworld, psychological_feature

(Chemistry) Two or more atoms bound
together as a single unit and forming part of a
molecule

chemical_chain, chain, unit_cell, couple,
molecule, group, radical, chemical_group

3 A tag cloud or word cloud (or weighted list in visual design) is a visual depiction of user-generated tags, or simply the

word content of a site, typically used to describe the content of web sites. Tags are usually single words and are
normally listed alphabetically, and the importance of a tag is shown with font size or color. Source: Wikipedia.

F. Gabbanini, TSRR vol. 2 (2010) 169-183 181

A set that is closed, associative, has an
identity element and every element has an
inverse

intersection, null_set, interval, range,
range_of_a_function, root, topological_space,
mathematical_space, image, solution,
mathematical_group, field, subset,
Mandelbrot_set, universal_set, domain,
domain_of_a_function, diagonal, locus, group

In order to quantify the match, let T indicate the Tag Cloud set, with f(s) indicating the

relative weight of every term s in in T. Moreover, let C(w) denote the set of coordinate terms for a
given term w. In order to obtain a numeric measure of the consistency of the coordinate terms
with the Tag Cloud, various strategies were attempted, as reported in Tab. 8, where m represents
the measure.

Tab. 8. Strategies to measure the extent to which a word “matches” a certain context.

Strategy 1 Set m = 0
For each word s in T
 For each word in C(w)
 If C(w) contains s
 m = m+1
Set m = m/|C(w)|

Strategy 2 Set m = 0
For each word s in T
 For each word in C(w)
 If C(w) contains s
 m = m+1+f(s)
Set m = m/|C(w)|

Strategy 3 Set m = 1
For each word s in T
 For each word in C(w)
 If C(w) contains s
 m = m*(1+f(s))
Set m = m/|C(w)|

While Strategy 1 simply measures the cardinality of the intersection between T and C(w), the other

two strategies try to adjust this measure for the frequency that a certain word has in the Tag Cloud: the
higher the frequency, the more representative a word is in the Tag Cloud and in the text from which the Tag
Cloud was built, the “more important” is the fact that C(w) contains the word. It is to be noted that
“contains” is here to be interpreted in terms of string distances, as discussed in section 3.

Whereas in the example of section 4, for each term in the corpus, only its first WordNet synset was
used for relation discovery, the synset of the term with the largest m score is used here. This potentially
allows leaving out unwanted senses that may give rise to relations that are not of interest in a given domain
(such as Table-subClassOf-Group and Step-subClassOf-Choice in the domain of tourism).

The updated relation discovery engine was implemented by a Java class named
TagCloudRelationExtractor, and was run several times, with varying strategies and varying tag
clouds. The best results were apparently obtained using Strategy 3, using a Tag Cloud that was built in
order not to contain terms whose relative weight falls under 0.01.

Discovered relations are represented in Tab. 9.

Tab. 9. Relations identified by the TagCloudRelationExtractor after parsing a corpus of 88 reviews from
http://www.accessatlast.com.

Term Relation Term Term Relation Term

Barn subClassOf Building Wheelchair subClassOf Chair
Cottage subClassOf Building Studio subClassOf Apartment
Castle subClassOf Building Wall partOf Building
Chalet subClassOf Building Wall partOf Room
Chair subClassOf Furniture Doorway partOf Wall

182 F. Gabbanini, TSRR vol. 2 (2010) 169-183

BookCase subClassOf Furniture Wall partOf Hallway
Sofa subClassOf Furniture Wall partOf Hall
Dresser subClassOf Furniture Carport subClassOf Building
Bed subClassOf Furniture Villa subClassOf Building
Suite subClassOf Apartment Tub partOf Bathroom
Restaurant subClassOf Building Wall partOf Room
Hospital subClassOf Building Wall partOf Hallway
Stairs subClassOf Stairway Garage subClassOf Building

While the number of identified relations is less than the one in Tab. 6, it seems that none of them

presents inconsistencies with the context. Apparently, using this strategy, none of the senses for the words
“Group” and “Choice” are found to be in line with the context and thus no relations involving the terms are
exploited: as a consequence, the relations Table-subClassOf-Group and Step-subClassOf-Choice are left out
of the result set.

6 - Conclusions and future developments

The report described details about the design and implementation of an Ontology Evolution
Manager that is able to integrate different engines to identify relations between terms. It then discusses an
application of the system for establishing relations between terms in a corpus of text documents and those
representing entities of a given ontology. The relation discovery engine illustrated in the example is based
on WordNet and results coming from its application are encouraging, although the overall strategy can
certainly be improved. Moreover, the example demonstrates that the architecture described in Gabbanini
(2010) seems to offer a good support for the implementation of ontology evolution processes and is open
for the integration of more refined strategies.

It is to be noted that a limit of the approach consists in the fact that WordNet has limited support
for multiple word terms (for example terms such as “Indoor Space” cannot be found), so that not all
relations involving concepts expressed by multiple words cannot be examined using the
WNRelationFinder class alone. This limit can be overcome by the fact that the implementation of the
relation finding process relies on the visitor pattern, which allows to apply a set of relation finding engines
(each implementing the IRelationFinder interface) having different characteristics, in order to
combine strengths of different source of background knowledge. In this perspective, it would be interesting
to use OpenCyc (OpenCyc, 2010) to support the relation finding engine.

Section 5 introduced a technique for removing “spurious” relations: while it proved to be effective,
it would be certainly useful to investigate more on procedures that automatically allow evaluating the
“quality” of newly discovered relations, based on the context in which the system is operating. This is a
relevant issue, discussed also in Zablith et al. (2010).

References

1. Burzagli, L., Como, A., Gabbanini, F., 2010. Towards the convergence of Web 2.0 and Semantic Web
for e-Inclusion. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (Eds.), Computers Helping
People with Special Needs. Vol. 6180 of Lecture Notes in Computer Science. Springer, pp. 343-350.

2. Gabbanini, F., 2010. On a Java based implementation of ontology evolution processes based on Natural
Language Processing. Tech. Rep. 65-8, Institute for Applied Physics, Italian National Research
Council.

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design patterns: elements of reusable object-
oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

4. Jaro, M. A., 1995. Probabilistic linkage of large public health data files (disc: P687-689). Statistics in
Medicine 14:491–498.

5. JWI, 2010. Available at http://projects.csail.mit.edu/jwi/, last visited on 26/10/2010
6. OpenCyc, 2010. Available at http://www.opencyc.org/, last visited on 14/10/2010
7. Sabou, M., d'Aquin, M., Motta, E., 2008. Scarlet: Semantic relation discovery by harvesting online

ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (Eds.), The Semantic Web:
Research and Applications. Vol. 5021 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, Berlin, Heidelberg, Ch. 72, pp. 854-858.

F. Gabbanini, TSRR vol. 2 (2010) 169-183 183

8. Sabou, M., d'Aquin, M., Motta, E., 2008b. Exploring the semantic web as background knowledge for
ontology matching. In: Spaccapietra, S., Pan, J., Thiran, P., Halpin, T., Staab, S., Svatek, V., Shvaiko,
P., Roddick, J. (Eds.), Journal on Data Semantics XI. Vol. 5383 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, Berlin, Heidelberg, Ch. 6, pp. 156-190.
9. Scarlet, 2010. Available at http://scarlet.open.ac.uk/, last visited on 17/09/2010

10. SecondString, 2010. Available at http://secondstring.sourceforge.net/, last visited on 06/10/2010
11. Winkler, W. E., 1999. The state of record linkage and current research problems. Statistics of Income

Division, Internal Revenue Service Publication R99/04. Available from
http://www.census.gov/srd/www/byname.html last visited on 06/10/2010.

12. WordNet, 2010. Available at http://wordnet.princeton.edu/, last visited on 17/09/2010
13. Zablith, F., Sabou, M., d’Aquin, M., Motta, E., 2009. Ontology evolution with Evolva. In: Aroyo, L.,

Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M.,
Simperl, E. (Eds.), The Semantic Web: Research and Applications. Vol. 5554 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, Berlin, Heidelberg, Ch. 80, pp. 908-912.

14. Zablith, F., d'Aquin, M., Sabou, M., Motta, E., 2010. Using ontological contexts to assess the relevance
of statements in ontology evolution. In: Knowledge Engineering and Knowledge Management by the
Masses. To appear in Lecture Notes in Computer Science. Springer-Verlag.

