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1 - Introduction 

 
Magnetic resonance imaging technique known as DWI (diffusion-weighted imaging) al-

lows measurement of water diffusivity on a pixel basis for evaluating pathology throughout the 

body and is now routinely incorporated into many body MRI protocols, mainly in oncology  [1-5]. 

Indeed water molecules motion reflects the interactions with other molecules, membranes, cells, 

and in general the interactions with the environment. Microstructural changes as e.g. cellular 

organization and/or integrity then affect the motion of water molecules, and consequently alter 

the water diffusion properties measured by DWI. Then DWI technique can be used to extract in-

formation about tissue organization at the cellular level indirectly from water motion.  

In general the signal intensity in DWI can be quantified by using a parameter known as 

ADC (Apparent Diffusion Coefficient) emphasizing that it is not the real diffusion coefficient, 

which is a measure of the average water molecular motion. In the simplest models, the distribu-

tion of a water molecule diffusing in a certain period of time is considered to have a Gaussian 

form with its width proportional to the ADC [6,7].
 
However, water in biological structures often 

displays non-Gaussian diffusion behavior, consequently the DWI signal shows a more complex 

behavior that need to be modeled following different approaches. 
In this work we explore the possibility to quantify the degree to which water diffusion in bio-

logic tissues is non-Gaussian introducing the AKC parameter (Apparent Kurtosis Coefficient). DKI 

was first described by studies in 2004 [8] and 2005 [9] and initially was applied exclusively for 

brain imaging [10-12], while in recent years some studies have shown the feasibility of applying 

DKI at multiple extra-cranial sites [13-18]. 

In this work we have realized DWI non-Gaussian diffusion maps to be used in the clinical 

routine along with standard ADC maps, giving to the radiologist another tool to explore how 

much structure inside a voxel is organized.  

In particular in this work some prostate DWI examples have been analyzed and will be 

shown. References to other studies using DKI in detection and characterization of prostate cancer 

can be found here [1,14,19–38,49,61-63]. 
 

2 - An introduction to Water Diffusion 
 
A complete description of the diffusion theory and DWI technique is beyond the scope of 

this article, so here we introduce some important concepts and equations, leaving some refer-

ences [2-4] for the interested readers.  

Diffusion measurements in MRI usually can be performed using the standard diffusion-

weighted pulse sequence (spin-echo echo-planar imaging) [39-41], obtaining images called DWI. 

DWI is performed by serially imaging the same tissue while varying the degree of water diffusion 

sensitization. The imaging gradient strength, direction, and temporal profile affect sensitivity to 

diffusion and are commonly reduced to a single simplified parameter referred to as the b-value 

[unit: s/mm2]. The images obtained at different b-values are subsequently used for computing a 

parametric map that allows quantitative assessment of the tissue’s water diffusion behavior.   

In this context the corresponding echo attenuation in a voxel can be expressed as 

 

𝑆(𝑏) = 𝑆0 × exp(−𝑏 × 𝐴𝐷𝐶) , (1) 
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where S is the signal intensity (a.u.), depending upon the apparent diffusion coefficient (ADC) and 

the diffusion-sensitizing factor, which can be calculated for a spin echo sequence with rectangu-

lar diffusion-encoding gradients as follows [40]: 

 

𝑏 =  𝛾2𝐺2𝛿2 (∆ −
𝛿

3
) . (2) 

 

Here,  is the duration of one diffusion-encoding gradient lobe,  is the time interval between the 

leading edges of the gradient lobes, G is the strength of the gradient, and  the gyromagnetic ratio. 

Then a fit on a voxel basis of equation (1) as a function of different b-values gives the 

ADC map that can superimposed on the standard anatomical images in order to obtain more in-

formation on the tissue under investigation. 
However, biological tissues are highly heterogeneous media that consist of various com-

partments and barriers with different diffusivities. In terms of its cytohistologic architecture, a 

tissue can be regarded as a porous structure made up of a set of more or less connected com-

partments in a networklike arrangement.  

The movement of water molecules during diffusion-driven random displacement is then 

impeded by compartmental boundaries and other molecular obstacles in such a way that the ac-

tual diffusion distance is reduced, compared with that expected in unrestricted diffusion. This is 

the reason for which the classical model of diffusion used in MRI is not always correct and must 

be thought as an approximation in many situations. Instead water in biological structures shows 

often non-Gaussian diffusion behavior. As a result, the MR signal intensity decay in tissue is not a 

simple mono-exponential function of the b-value [1,15,42] as described in equation (1). 

Several approaches have been used to model the nonlinear decay of DWI signal intensity 

when more than 2 b-values are acquired. These approaches include bi-exponential fitting, from 

which 2 components that hypothetically reflect 2 separate biophysical compartments can be de-

rived [43],
 
stretched-exponential fitting, which describes diffusion-related signal intensity decay 

as a continuous distribution of sources decaying at different rates [44],
 
and diffusional kurtosis 

analysis, which takes into account non-Gaussian properties of water diffusion by measuring the 

kurtosis [9]. 

Kurtosis represents the extent to which the diffusion pattern of the water molecules de-

viates from a perfect Gaussian curve. Unlike the bi-exponential model, the stretched-exponential 

and the kurtosis methods do not make assumptions regarding the number of biophysical com-

partments or even the existence of multiple compartments [45].
 
From the kurtosis analysis the 

apparent diffusion coefficient (ADC) and the apparent kurtosis coefficient (AKC) can be estimat-

ed, which are phenomenological parameters [1] supported by observations and with no direct 

biophysical correlation.  

What we can observe is that more organized is a structure of parenchyma, much more 

constrains a water molecules can explore during diffusion process [1,42,46-48]. Furthermore any 

modification of cellular arrangements, cell size distributions, cellular density, extracellular space 

viscosity, glandular structures, and integrity of membranes or to measure any modification of 

macromolecule’s concentration, translates in some features of ADC and AKC. However an inter-

pretation of ADC and AKC is still now no straightforward [9,50-58]. 

The AKC parameter (adimensional) can be inserted in the mathematical signal formula-

tion as follows: 

 

𝑆(𝑏) = 𝑆0 × exp(−𝑏 × 𝐴𝐷𝐶 + 1
6⁄ 𝐴𝐾𝐶 × 𝑏2 × 𝐴𝐷𝐶2) .   (3) 
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This quadratic model shows a better agreement in many tissues as shown in the example 
of Fig. 1. 

 

 

Fig. 1 - Examples of data fitting with linear and quadratic models. The quadratic model incorporating the Kurtosis term  
shows a better norm of residuals in respect to the linear model. Data coming from a patient affected by prostate cancer. 

 

AKC equals 0 when water is experiencing completely Gaussian diffusion [1], while bio-

logic tissues tend to exhibit AKC values between 0 and 1. Studies also suggest lowering of K in the 

setting of post-treatment tumor necrosis [59,60]. Post-processing software commonly applies a 

maximal possible upper limit for AKC, above which the value is likely to represent an outlier due 

to motion, noise, or other artifact [1,9,55].  

 

3 - Materials and Methods 
 

Using the Philips Achieva 1.5 T available for clinical routine use at the Santa Maria Nuova 

Hospital in Florence we acquired a dataset of 20 patients affected by suspected prostate cancer 

calculating for each the ADC and AKC maps. A set of 5 b-values (0, 500, 1000, 1500, 2000 s/mm2) 

was chosen as a trade-off for clinical use and best signal-to-noise ratio in DWI [1].  Usually b-

values above 1000 s/mm2 are necessary to successful capture the non-gaussian behavior. 

Special software has been developed in the MATLAB framework in order to open and 

elaborate the DICOM images coming from the MR scanner. This software allows the data elabora-

tion of DWI images realizing ADC and AKC maps (Figs. 2-6), at the same time introducing some 

post-processing tools (as moving average filter or interpolating algorithm) in order to support 

radiologists in the images interpretation. 
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4 - Results 
 

DWI images have been acquired for all the patients’ dataset, estimating ADC and AKC on 

voxel basis using Eq. (2).  

Radiologists on clinical practice, cross-correlating these results with the other coming 

from standard MRI examination and patient clinical report, have used the obtained ADC and AKC 

maps. 

An example of ADC and AKC maps is shown in Fig. 1.  

 

 

 

Fig. 2 - Example of ADC ("D") and AKC ("Kurtosis") for a patient slice. 
In this case the color is different from the standard gray scalar of radiology. 

 

 

Figure 3 is an example of ADC and AKC maps before and after post-processing with data 

interpolation. The color scale in this case is the standard for radiologists. This is just an example 

of the software developed for DWI data analysis.  

In Fig. 4 and Fig. 5 two examples of ADC tridimensional view are shown for two patients, 

while for Patient 2 the AKC tridimensional view is shown in Fig. 6. 
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Fig. 3 - Examples of ADC (“D”) and AKC (“Kutosis”) parameters for a patient slice. In the first line the original coefficients, 
while in the second line the maps were interpolated in order to obtain a better resolution. 

 

 

Fig. 4 - Example of a tridimensional ADC map for patient 1. 
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Fig. 5 - Example of ADC for patient 2 in a tridimensional view. 

 

 

Fig. 6 - Example of AKC tridimensional view for patient 2. 

 
 

5 - Conclusions 
 
DWI non-Gaussian analysis has shown the potential to become a powerful tool in sup-

porting radiologists in the clinical practice. 

However much work remains to be done to fully understand the mechanisms underlying 

non-Gaussian diffusion, and the precise bio-structural significance of AKC in relation to micro-

structural properties of tissues.  

In this framework we are working on a new and different approach based on the theo-

retical physics of diffusion in complex medium [64-67] 
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At the same time we are working on some kind of nanoparticles as a new theranostic 

agent for MRI applications, in particular trying to understand if nanoparticles can be revealed by 

diffusion-MRI techniques, looking at the change in water motion due to the presence of nanopar-

ticles in the environment [68,69].  
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